Resit Exam — Functional Analysis (WIFA-08)

Tuesday 27 June 2017, 9.00h–12.00h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (7 + 10 + 8 = 25 points)

Let X be a finite-dimensional linear space over a field K. Write $X = \text{span} \{e_1, \ldots, e_d\}$ and define

 $||x||_{+} = \max\{|\lambda_i| : i = 1, \dots, d\} \text{ where } x = \lambda_1 e_1 + \dots + \lambda_d e_d, \quad \lambda_i \in \mathbb{K}.$

Prove the following statements:

- (a) $\|\cdot\|_+$ is a norm on X;
- (b) $(X, \|\cdot\|_+)$ is a Banach space (i.e., every Cauchy sequence has a limit);
- (c) $(X, \|\cdot\|)$ is a Banach space for any other norm $\|\cdot\|$ on X.

Problem 2 (10 + 8 + 7 = 25 points)

Let $X = \mathcal{C}([a, b], \mathbb{K})$ be provided with the supremum norm. Consider the following linear operator:

$$T: X \to X, \quad Tf(x) = xf(x).$$

Prove the following statements:

- (a) $||T|| = \max\{|a|, |b|\};$
- (b) T has no eigenvalues;
- (c) $\rho(T) = \mathbb{K} \setminus [a, b].$

Problem 3 (4 + 3 + 10 + 3 = 20 points)

- (a) Formulate the closed graph theorem.
- (b) Define the linear subspace $V \subset \ell^2$ by

$$V = \{ (x_1, x_2, x_3, \dots) \in \ell^2 : (x_1, 2x_2, 3x_3, \dots) \in \ell^2 \}$$

and consider the linear operator

$$T: V \subset \ell^2 \to \ell^2, \quad (x_1, x_2, x_3, \dots) \mapsto (x_1, 2x_2, 3x_3, \dots).$$

Prove the following statements:

- (i) T is not bounded;
- (ii) T is closed.
- (iii) V is not closed in ℓ^2 .

Problem 4 (5 + 5 + 5 + 5 = 20 points)

Let X be a normed linear space. For nonempty subsets $V \subset X$ and $Z \subset X'$ define

$$V^{\perp} = \{ f \in X' : f(x) = 0 \text{ for all } x \in V \},\$$

 ${}^{\perp}Z = \{ x \in X : f(x) = 0 \text{ for all } f \in Z \}.$

Prove the following statements:

- (a) V^{\perp} is a linear subspace of X';
- (b) V^{\perp} is closed in X';
- (c) $V_1 \subset V_2 \subset X \Rightarrow V_2^{\perp} \subset V_1^{\perp};$
- (d) $V \subset {}^{\perp}(V^{\perp}).$

End of test (90 points)

Solution of Problem 1 (7 + 10 + 8 = 25 points)

(a) Clearly, ||x||₊ ≥ 0 for all x ∈ X. If ||x||₊ = 0, then λ_i = 0 for all i = 1,..., d, which implies that x = 0.
(1 point)

The homogeneity of the norm is proven as follows:

$$\mu x = (\mu \lambda_1) e_1 + \dots + (\mu \lambda_d) e_d$$
$$\|\mu x\|_+ = \max\{|\mu \lambda_i| : i = 1, \dots, d\}$$
$$= \max\{|\mu| |\lambda_i| : i = 1, \dots, d\}$$
$$= |\mu| \max\{|\lambda_i| : i = 1, \dots, d\}$$
$$= |\mu| \|x\|_+.$$

(3 points)

Finally, the triangle inequality follows from:

$$\begin{aligned} x + y &= (\lambda_1 + \mu_1)e_1 + \dots + (\lambda_d + \mu_d)e_d \\ \|x + y\|_+ &= \max\{|\lambda_i + \mu_i| : i = 1, \dots, d\} \\ &\leq \max\{|\lambda_i| + |\mu_i| : i = 1, \dots, d\} \\ &\leq \max\{|\lambda_i| : i = 1, \dots, d\} + \max\{|\mu_i| : i = 1, \dots, d\} \\ &= \|x\|_+ + \|y\|_+. \end{aligned}$$

(3 points)

(b) If $x_n = \lambda_1^n e_1 + \cdots + \lambda_d^n e_d$ is a Cauchy sequence in $(X, \|\cdot\|_+)$, then for each $\varepsilon > 0$ there exists N > 0 such that

$$n, m \ge N \quad \Rightarrow \quad ||x_n - x_m||_+ \le \varepsilon$$

 $\Rightarrow \quad |\lambda_i^n - \lambda_i^m| \le \varepsilon \quad \text{for all} \quad i = 1, \dots, d.$

This means that (λ_i^n) is a Cauchy sequence in \mathbb{K} for each $i = 1, \ldots, n$. (4 points)

Since \mathbb{K} is complete, $\lambda_i^n \to \lambda_i$ for some $\lambda_i \in \mathbb{K}$. (2 points)

Let $N_i > 0$ be such that

$$n \ge N_i \quad \Rightarrow \quad |\lambda_i^n - \lambda_i| \le \varepsilon,$$

and set $M = \max\{N_1, \ldots, N_d\}$. Define $x = \lambda_1 e_1 + \cdots + \lambda_d e_d$. Then clearly $x \in X$ and

$$n \ge M \quad \Rightarrow \quad ||x_n - x||_+ = \max\{|\lambda_i^n - \lambda_i| : i = 1, \dots, d\} \le \varepsilon.$$

This shows that $x_n \to x$ in $(X, \|\cdot\|_+)$. (4 points) (c) On a finite-dimensional space all norms are equivalent. Hence, there exist constants a,b>0 such that

$$a\|x\|_{+} \le \|x\| \le b\|x\|_{+}$$

for all $x \in X$. (3 points)

The first inequality implies that if (x_n) is a Cauchy sequence with respect to $\|\cdot\|$ then it is also a Cauchy sequence with respect to $\|\cdot\|_+$. By part (b) it follows that there exists $x \in X$ such that $\|x_n - x\|_+ \to 0$.

(3 points)

The second inequality now implies that $||x_n - x|| \to 0$ as well. (2 points)

Solution of Problem 2 (10 + 8 + 7 = 25 points)

(a) For all $x \in [a, b]$ we have the following inequality:

$$|Tf(x)| = |xf(x)| = |x| |f(x)| \le |x| ||f||_{\infty} \le \max\{|a|, |b|\} ||f||_{\infty}.$$

(4 points)

This implies that

$$||Tf||_{\infty} = \sup_{x \in [a,b]} |Tf(x)| \le \max\{|a|, |b|\} ||f||_{\infty}$$

so that

$$||T|| = \sup_{f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} \le \max\{|a|, |b|\}.$$

(2 points)

On the other hand, if f(x) = 1 for all $x \in [a, b]$, then the last inequality sign becomes an equality.

(4 points)

(b) If $Tf = \lambda f$ then $(x - \lambda)f(x) = 0$ for all $x \in [a, b]$ so that f(x) = 0 for all $x \in [a, b] \setminus \{\lambda\}$.

(3 points)

Since f is a continuous function it follows that that f(x) = 0 for all $x \in [a, b]$. (3 points)

We conclude that $Tf = \lambda f$ implies f = 0 which means that T has no eigenvalues. (2 points)

(c) If $\lambda \notin [a, b]$ then $\delta = d(\lambda, [a, b]) > 0$. (2 points)

Note that for all $x \in [a, b]$ we have

$$|(T-\lambda)^{-1}f(x)| = \left|\frac{f(x)}{x-\lambda}\right| \le \frac{1}{\delta}|f(x)| \le \frac{1}{\delta}||f||_{\infty}$$

which implies that

$$\|(T-\lambda)^{-1}f\|_{\infty} \le \frac{1}{\delta} \|f\|_{\infty}$$

(3 points)

Since $(T - \lambda)^{-1}$ is bounded it follows that $\lambda \in \rho(T)$. (2 points)

Solution of Problem 3 (4 + 3 + 10 + 3 = 20 points)

- (a) Assume that X and Y are Banach spaces, $V \subset X$ is a closed linear subspace, and $T: V \to Y$ is a linear operator. If the graph G(T) of T is closed then $T \in B(V, Y)$.
 - (4 points)
- (b) (i) Let $e_n = (0, ..., 0, 1, 0, ...)$ where the 1 is at the *n*-th entry of the sequence. Clearly, $e_n \in V$, $||e_n|| = 1$, and $Te_n = ne_n$. This implies that $||Te_n|| = n$ so that

$$\sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} = \infty,$$

which implies that T is unbounded.

(3 points)

(ii) Let $(x, y) \in \overline{G(T)}$, then there exists a sequence $x^k \in V$ such that $x^k \to x$ and $Tx^k \to y$.

For all $k, n \in \mathbb{N}$ we have

$$|x_n^k - y_n/n| \le |nx_n^k - y_n| \le ||Tx^k - y|| \to 0$$
 as $k \to \infty$,

and

$$|x_n^k - x_n| \le ||x^k - x|| \to 0 \quad \text{as} \quad k \to \infty.$$

Hence,

$$\frac{y_n}{n} = \lim_{n \to \infty} x_n^k = x_n \quad \text{for all} \quad n\mathbb{N},$$

which implies that $y_n = nx_n$ so that y = Tx.

(5 points)

In order to show that $x \in V$ we must prove that $y = Tx \in \ell^2$. Note that

$$||y|| \le ||y - Tx^k|| + ||Tx^k||.$$

The first term on the right hand side goes to zero, whereas the second term on the right hand side is bounded. Hence $||y|| < \infty$, which means that $y \in \ell^2$. This proves that $(x, y) \in G(T)$ which implies that G(T) is closed.

(5 points)

(iii) If V is closed and T is closed, then by the closed graph theorem it follows that $T \in B(V, Y)$. However, by part (i) it follows that T is unbounded and by part (ii) it follows that T is closed. Hence, V cannot be closed. (3 points)

Solution of Problem 4 (5 + 5 + 5 + 5 = 20 points)

(a) If $f, g \in V^{\perp}$ and $\lambda, \mu \in \mathbb{K}$, then $x \in V$ implies that

$$(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x) = 0,$$

which shows that $\lambda f + \mu g \in V^{\perp}$ as well. (5 points)

(b) If $f \in \overline{V^{\perp}}$, then there exists a sequence $f_n \in V^{\perp}$ such that $f_n \to f$. Let $x \in V$, then

$$|f(x)| = |f(x) - f_n(x)| \le ||f_n - f|| \, ||x|| \to 0,$$

which shows that $f \in V^{\perp}$ as well. We conclude that V^{\perp} is closed in X'. (5 points)

- (c) If f ∈ V₂[⊥] then f(x) = 0 for all x ∈ V₂. Since V₁ ⊂ V₂ it follows that f(x) = 0 for all x ∈ V₁ as well. This means that f ∈ V₁[⊥].
 (5 points)
- (d) If x ∈ V then f(x) = 0 for all f ∈ V[⊥], which in turn implies that x ∈ [⊥](V[⊥]).
 (5 points)