# Resit Exam - Functional Analysis (WIFA-08) 

Tuesday 27 June 2017, 9.00h-12.00h
University of Groningen

## Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If $p$ is the number of marks then the exam grade is $G=1+p / 10$.

## Problem $1(7+10+8=25$ points $)$

Let $X$ be a finite-dimensional linear space over a field $\mathbb{K}$. Write $X=\operatorname{span}\left\{e_{1}, \ldots, e_{d}\right\}$ and define

$$
\|x\|_{+}=\max \left\{\left|\lambda_{i}\right|: i=1, \ldots, d\right\} \quad \text { where } \quad x=\lambda_{1} e_{1}+\cdots+\lambda_{d} e_{d}, \quad \lambda_{i} \in \mathbb{K} .
$$

Prove the following statements:
(a) $\|\cdot\|_{+}$is a norm on $X$;
(b) $\left(X,\|\cdot\|_{+}\right)$is a Banach space (i.e., every Cauchy sequence has a limit);
(c) $(X,\|\cdot\|)$ is a Banach space for any other norm $\|\cdot\|$ on $X$.

## Problem $2(10+8+7=25$ points)

Let $X=\mathcal{C}([a, b], \mathbb{K})$ be provided with the supremum norm. Consider the following linear operator:

$$
T: X \rightarrow X, \quad T f(x)=x f(x) .
$$

Prove the following statements:
(a) $\|T\|=\max \{|a|,|b|\}$;
(b) $T$ has no eigenvalues;
(c) $\rho(T)=\mathbb{K} \backslash[a, b]$.

Problem $3(4+3+10+3=20$ points $)$
(a) Formulate the closed graph theorem.
(b) Define the linear subspace $V \subset \ell^{2}$ by

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}:\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right) \in \ell^{2}\right\}
$$

and consider the linear operator

$$
T: V \subset \ell^{2} \rightarrow \ell^{2}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right) .
$$

Prove the following statements:
(i) $T$ is not bounded;
(ii) $T$ is closed.
(iii) $V$ is not closed in $\ell^{2}$.

Problem $4(5+5+5+5=20$ points $)$
Let $X$ be a normed linear space. For nonempty subsets $V \subset X$ and $Z \subset X^{\prime}$ define

$$
\begin{aligned}
& V^{\perp}=\left\{f \in X^{\prime}: f(x)=0 \text { for all } x \in V\right\}, \\
& { }^{\perp} Z=\{x \in X: f(x)=0 \text { for all } f \in Z\} .
\end{aligned}
$$

Prove the following statements:
(a) $V^{\perp}$ is a linear subspace of $X^{\prime}$;
(b) $V^{\perp}$ is closed in $X^{\prime}$;
(c) $V_{1} \subset V_{2} \subset X \Rightarrow V_{2}^{\perp} \subset V_{1}^{\perp}$;
(d) $V \subset{ }^{\perp}\left(V^{\perp}\right)$.

Solution of Problem $1(7+10+8=25$ points $)$
(a) Clearly, $\|x\|_{+} \geq 0$ for all $x \in X$. If $\|x\|_{+}=0$, then $\lambda_{i}=0$ for all $i=1, \ldots, d$, which implies that $x=0$.
(1 point)
The homogeneity of the norm is proven as follows:

$$
\begin{aligned}
\mu x & =\left(\mu \lambda_{1}\right) e_{1}+\cdots+\left(\mu \lambda_{d}\right) e_{d} \\
\|\mu x\|_{+} & =\max \left\{\left|\mu \lambda_{i}\right|: i=1, \ldots, d\right\} \\
& =\max \left\{|\mu|\left|\lambda_{i}\right|: i=1, \ldots, d\right\} \\
& =|\mu| \max \left\{\left|\lambda_{i}\right|: i=1, \ldots, d\right\} \\
& =|\mu|\|x\|_{+} .
\end{aligned}
$$

## (3 points)

Finally, the triangle inequality follows from:

$$
\begin{aligned}
x+y & =\left(\lambda_{1}+\mu_{1}\right) e_{1}+\cdots+\left(\lambda_{d}+\mu_{d}\right) e_{d} \\
\|x+y\|_{+} & =\max \left\{\left|\lambda_{i}+\mu_{i}\right|: i=1, \ldots, d\right\} \\
& \leq \max \left\{\left|\lambda_{i}\right|+\left|\mu_{i}\right|: i=1, \ldots, d\right\} \\
& \leq \max \left\{\left|\lambda_{i}\right|: i=1, \ldots, d\right\}+\max \left\{\left|\mu_{i}\right|: i=1, \ldots, d\right\} \\
& =\|x\|_{+}+\|y\|_{+} .
\end{aligned}
$$

## (3 points)

(b) If $x_{n}=\lambda_{1}^{n} e_{1}+\cdots+\lambda_{d}^{n} e_{d}$ is a Cauchy sequence in $\left(X,\|\cdot\|_{+}\right)$, then for each $\varepsilon>0$ there exists $N>0$ such that

$$
\begin{aligned}
n, m \geq N & \Rightarrow\left\|x_{n}-x_{m}\right\|_{+} \leq \varepsilon \\
& \Rightarrow \quad\left|\lambda_{i}^{n}-\lambda_{i}^{m}\right| \leq \varepsilon \quad \text { for all } \quad i=1, \ldots, d .
\end{aligned}
$$

This means that $\left(\lambda_{i}^{n}\right)$ is a Cauchy sequence in $\mathbb{K}$ for each $i=1, \ldots, n$.

## (4 points)

Since $\mathbb{K}$ is complete, $\lambda_{i}^{n} \rightarrow \lambda_{i}$ for some $\lambda_{i} \in \mathbb{K}$.

## (2 points)

Let $N_{i}>0$ be such that

$$
n \geq N_{i} \quad \Rightarrow \quad\left|\lambda_{i}^{n}-\lambda_{i}\right| \leq \varepsilon,
$$

and set $M=\max \left\{N_{1}, \ldots, N_{d}\right\}$. Define $x=\lambda_{1} e_{1}+\cdots+\lambda_{d} e_{d}$. Then clearly $x \in X$ and

$$
n \geq M \quad \Rightarrow \quad\left\|x_{n}-x\right\|_{+}=\max \left\{\left|\lambda_{i}^{n}-\lambda_{i}\right|: i=1, \ldots, d\right\} \leq \varepsilon .
$$

This shows that $x_{n} \rightarrow x$ in $\left(X,\|\cdot\|_{+}\right)$.
(4 points)
(c) On a finite-dimensional space all norms are equivalent. Hence, there exist constants $a, b>0$ such that

$$
a\|x\|_{+} \leq\|x\| \leq b\|x\|_{+}
$$

for all $x \in X$.

## (3 points)

The first inequality implies that if $\left(x_{n}\right)$ is a Cauchy sequence with respect to $\|\cdot\|$ then it is also a Cauchy sequence with respect to $\|\cdot\|_{+}$. By part (b) it follows that there exists $x \in X$ such that $\left\|x_{n}-x\right\|_{+} \rightarrow 0$.

## (3 points)

The second inequality now implies that $\left\|x_{n}-x\right\| \rightarrow 0$ as well.
(2 points)

Solution of Problem $2(10+8+7=25$ points $)$
(a) For all $x \in[a, b]$ we have the following inequality:

$$
|T f(x)|=|x f(x)|=|x||f(x)| \leq|x|\|f\|_{\infty} \leq \max \{|a|,|b|\}\|f\|_{\infty} .
$$

## (4 points)

This implies that

$$
\|T f\|_{\infty}=\sup _{x \in[a, b]}|T f(x)| \leq \max \{|a|,|b|\}\|f\|_{\infty}
$$

so that

$$
\|T\|=\sup _{f \neq 0} \frac{\|T f\|_{\infty}}{\|f\|_{\infty}} \leq \max \{|a|,|b|\} .
$$

(2 points)
On the other hand, if $f(x)=1$ for all $x \in[a, b]$, then the last inequality sign becomes an equality.
(4 points)
(b) If $T f=\lambda f$ then $(x-\lambda) f(x)=0$ for all $x \in[a, b]$ so that $f(x)=0$ for all $x \in[a, b] \backslash\{\lambda\}$.
(3 points)
Since $f$ is a continuous function it follows that that $f(x)=0$ for all $x \in[a, b]$.
(3 points)
We conclude that $T f=\lambda f$ implies $f=0$ which means that $T$ has no eigenvalues.
(2 points)
(c) If $\lambda \notin[a, b]$ then $\delta=d(\lambda,[a, b])>0$.
(2 points)
Note that for all $x \in[a, b]$ we have

$$
\left|(T-\lambda)^{-1} f(x)\right|=\left|\frac{f(x)}{x-\lambda}\right| \leq \frac{1}{\delta}|f(x)| \leq \frac{1}{\delta}\|f\|_{\infty}
$$

which implies that

$$
\left\|(T-\lambda)^{-1} f\right\|_{\infty} \leq \frac{1}{\delta}\|f\|_{\infty}
$$

## (3 points)

Since $(T-\lambda)^{-1}$ is bounded it follows that $\lambda \in \rho(T)$.
(2 points)

Solution of Problem 3 (4+3+10+3=20 points)
(a) Assume that $X$ and $Y$ are Banach spaces, $V \subset X$ is a closed linear subspace, and $T: V \rightarrow Y$ is a linear operator. If the graph $G(T)$ of $T$ is closed then $T \in B(V, Y)$.

## (4 points)

(b) (i) Let $e_{n}=(0, \ldots, 0,1,0, \ldots)$ where the 1 is at the $n$-th entry of the sequence. Clearly, $e_{n} \in V,\left\|e_{n}\right\|=1$, and $T e_{n}=n e_{n}$. This implies that $\left\|T e_{n}\right\|=n$ so that

$$
\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}=\infty
$$

which implies that $T$ is unbounded.

## (3 points)

(ii) Let $(x, y) \in \overline{G(T)}$, then there exists a sequence $x^{k} \in V$ such that $x^{k} \rightarrow x$ and $T x^{k} \rightarrow y$.

For all $k, n \in \mathbb{N}$ we have

$$
\left|x_{n}^{k}-y_{n} / n\right| \leq\left|n x_{n}^{k}-y_{n}\right| \leq\left\|T x^{k}-y\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty,
$$

and

$$
\left|x_{n}^{k}-x_{n}\right| \leq\left\|x^{k}-x\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Hence,

$$
\frac{y_{n}}{n}=\lim _{n \rightarrow \infty} x_{n}^{k}=x_{n} \quad \text { for all } n \mathbb{N},
$$

which implies that $y_{n}=n x_{n}$ so that $y=T x$.

## (5 points)

In order to show that $x \in V$ we must prove that $y=T x \in \ell^{2}$. Note that

$$
\|y\| \leq\left\|y-T x^{k}\right\|+\left\|T x^{k}\right\| .
$$

The first term on the right hand side goes to zero, whereas the second term on the right hand side is bounded. Hence $\|y\|<\infty$, which means that $y \in \ell^{2}$. This proves that $(x, y) \in G(T)$ which implies that $G(T)$ is closed.
(5 points)
(iii) If $V$ is closed and $T$ is closed, then by the closed graph theorem it follows that $T \in B(V, Y)$. However, by part (i) it follows that $T$ is unbounded and by part (ii) it follows that $T$ is closed. Hence, $V$ cannot be closed.
(3 points)

Solution of Problem $4(5+5+5+5=20$ points $)$
(a) If $f, g \in V^{\perp}$ and $\lambda, \mu \in \mathbb{K}$, then $x \in V$ implies that

$$
(\lambda f+\mu g)(x)=\lambda f(x)+\mu g(x)=0
$$

which shows that $\lambda f+\mu g \in V^{\perp}$ as well.

## (5 points)

(b) If $f \in \overline{V^{\perp}}$, then there exists a sequence $f_{n} \in V^{\perp}$ such that $f_{n} \rightarrow f$. Let $x \in V$, then

$$
|f(x)|=\left|f(x)-f_{n}(x)\right| \leq\left\|f_{n}-f\right\|\|x\| \rightarrow 0
$$

which shows that $f \in V^{\perp}$ as well. We conclude that $V^{\perp}$ is closed in $X^{\prime}$.
(5 points)
(c) If $f \in V_{2}^{\perp}$ then $f(x)=0$ for all $x \in V_{2}$. Since $V_{1} \subset V_{2}$ it follows that $f(x)=0$ for all $x \in V_{1}$ as well. This means that $f \in V_{1}^{\perp}$.

## (5 points)

(d) If $x \in V$ then $f(x)=0$ for all $f \in V^{\perp}$, which in turn implies that $x \in^{\perp}\left(V^{\perp}\right)$. (5 points)

