
Resit Exam — Functional Analysis (WIFA–08)

Tuesday 27 June 2017, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (7 + 10 + 8 = 25 points)

LetX be a finite-dimensional linear space over a fieldK. WriteX = span {e1, . . . , ed}
and define

‖x‖+ = max{|λi| : i = 1, . . . , d} where x = λ1e1 + · · ·+ λded, λi ∈ K.

Prove the following statements:

(a) ‖ · ‖+ is a norm on X ;

(b) (X, ‖ · ‖+) is a Banach space (i.e., every Cauchy sequence has a limit);

(c) (X, ‖ · ‖) is a Banach space for any other norm ‖ · ‖ on X .

Problem 2 (10 + 8 + 7 = 25 points)

Let X = C([a, b],K) be provided with the supremum norm. Consider the following
linear operator:

T : X → X, Tf(x) = xf(x).

Prove the following statements:

(a) ‖T‖ = max{|a|, |b|};

(b) T has no eigenvalues;

(c) ρ(T ) = K \ [a, b].
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Problem 3 (4 + 3 + 10 + 3 = 20 points)

(a) Formulate the closed graph theorem.

(b) Define the linear subspace V ⊂ ℓ2 by

V = {(x1, x2, x3, . . . ) ∈ ℓ2 : (x1, 2x2, 3x3, . . . ) ∈ ℓ2}

and consider the linear operator

T : V ⊂ ℓ2 → ℓ2, (x1, x2, x3, . . . ) 7→ (x1, 2x2, 3x3, . . . ).

Prove the following statements:

(i) T is not bounded;

(ii) T is closed.

(iii) V is not closed in ℓ2.

Problem 4 (5 + 5 + 5 + 5 = 20 points)

Let X be a normed linear space. For nonempty subsets V ⊂ X and Z ⊂ X ′ define

V ⊥ = {f ∈ X ′ : f(x) = 0 for all x ∈ V },

⊥Z = {x ∈ X : f(x) = 0 for all f ∈ Z}.

Prove the following statements:

(a) V ⊥ is a linear subspace of X ′;

(b) V ⊥ is closed in X ′;

(c) V1 ⊂ V2 ⊂ X ⇒ V ⊥
2 ⊂ V ⊥

1 ;

(d) V ⊂ ⊥(V ⊥).

End of test (90 points)
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Solution of Problem 1 (7 + 10 + 8 = 25 points)

(a) Clearly, ‖x‖+ ≥ 0 for all x ∈ X . If ‖x‖+ = 0, then λi = 0 for all i = 1, . . . , d,
which implies that x = 0.

(1 point)

The homogeneity of the norm is proven as follows:

µx = (µλ1)e1 + · · ·+ (µλd)ed

‖µx‖+ = max{|µλi| : i = 1, . . . , d}

= max{|µ| |λi| : i = 1, . . . , d}

= |µ|max{|λi| : i = 1, . . . , d}

= |µ|‖x‖+.

(3 points)

Finally, the triangle inequality follows from:

x+ y = (λ1 + µ1)e1 + · · ·+ (λd + µd)ed

‖x+ y‖+ = max{|λi + µi| : i = 1, . . . , d}

≤ max{|λi|+ |µi| : i = 1, . . . , d}

≤ max{|λi| : i = 1, . . . , d}+max{|µi| : i = 1, . . . , d}

= ‖x‖+ + ‖y‖+.

(3 points)

(b) If xn = λn
1e1+ · · ·+λn

ded is a Cauchy sequence in (X, ‖ · ‖+), then for each ε > 0
there exists N > 0 such that

n,m ≥ N ⇒ ‖xn − xm‖+ ≤ ε

⇒ |λn
i − λm

i | ≤ ε for all i = 1, . . . , d.

This means that (λn
i ) is a Cauchy sequence in K for each i = 1, . . . , n.

(4 points)

Since K is complete, λn
i → λi for some λi ∈ K.

(2 points)

Let Ni > 0 be such that

n ≥ Ni ⇒ |λn
i − λi| ≤ ε,

and set M = max{N1, . . . , Nd}. Define x = λ1e1 + · · · + λded. Then clearly
x ∈ X and

n ≥ M ⇒ ‖xn − x‖+ = max{|λn
i − λi| : i = 1, . . . , d} ≤ ε.

This shows that xn → x in (X, ‖ · ‖+).

(4 points)
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(c) On a finite-dimensional space all norms are equivalent. Hence, there exist con-
stants a, b > 0 such that

a‖x‖+ ≤ ‖x‖ ≤ b‖x‖+

for all x ∈ X .

(3 points)

The first inequality implies that if (xn) is a Cauchy sequence with respect to ‖·‖
then it is also a Cauchy sequence with respect to ‖ · ‖+. By part (b) it follows
that there exists x ∈ X such that ‖xn − x‖+ → 0.

(3 points)

The second inequality now implies that ‖xn − x‖ → 0 as well.

(2 points)
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Solution of Problem 2 (10 + 8 + 7 = 25 points)

(a) For all x ∈ [a, b] we have the following inequality:

|Tf(x)| = |xf(x)| = |x| |f(x)| ≤ |x| ‖f‖∞ ≤ max{|a|, |b|}‖f‖∞.

(4 points)

This implies that

‖Tf‖∞ = sup
x∈[a,b]

|Tf(x)| ≤ max{|a|, |b|}‖f‖∞

so that

‖T‖ = sup
f 6=0

‖Tf‖∞
‖f‖∞

≤ max{|a|, |b|}.

(2 points)

On the other hand, if f(x) = 1 for all x ∈ [a, b], then the last inequality sign
becomes an equality.

(4 points)

(b) If Tf = λf then (x − λ)f(x) = 0 for all x ∈ [a, b] so that f(x) = 0 for all
x ∈ [a, b] \ {λ}.

(3 points)

Since f is a continuous function it follows that that f(x) = 0 for all x ∈ [a, b].

(3 points)

We conclude that Tf = λf implies f = 0 which means that T has no eigenvalues.

(2 points)

(c) If λ /∈ [a, b] then δ = d(λ, [a, b]) > 0.

(2 points)

Note that for all x ∈ [a, b] we have

|(T − λ)−1f(x)| =

∣

∣

∣

∣

f(x)

x− λ

∣

∣

∣

∣

≤
1

δ
|f(x)| ≤

1

δ
‖f‖∞

which implies that

‖(T − λ)−1f‖∞ ≤
1

δ
‖f‖∞

(3 points)

Since (T − λ)−1 is bounded it follows that λ ∈ ρ(T ).

(2 points)
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Solution of Problem 3 (4 + 3 + 10 + 3 = 20 points)

(a) Assume that X and Y are Banach spaces, V ⊂ X is a closed linear subspace,
and T : V → Y is a linear operator. If the graph G(T ) of T is closed then
T ∈ B(V, Y ).

(4 points)

(b) (i) Let en = (0, . . . , 0, 1, 0, . . . ) where the 1 is at the n-th entry of the sequence.
Clearly, en ∈ V , ‖en‖ = 1, and Ten = nen. This implies that ‖Ten‖ = n
so that

sup
x 6=0

‖Tx‖

‖x‖
= ∞,

which implies that T is unbounded.

(3 points)

(ii) Let (x, y) ∈ G(T ), then there exists a sequence xk ∈ V such that xk → x
and Txk → y.

For all k, n ∈ N we have

|xk
n − yn/n| ≤ |nxk

n − yn| ≤ ‖Txk − y‖ → 0 as k → ∞,

and
|xk

n − xn| ≤ ‖xk − x‖ → 0 as k → ∞.

Hence,
yn
n

= lim
n→∞

xk
n = xn for all nN,

which implies that yn = nxn so that y = Tx.

(5 points)

In order to show that x ∈ V we must prove that y = Tx ∈ ℓ2. Note that

‖y‖ ≤ ‖y − Txk‖+ ‖Txk‖.

The first term on the right hand side goes to zero, whereas the second
term on the right hand side is bounded. Hence ‖y‖ < ∞, which means
that y ∈ ℓ2. This proves that (x, y) ∈ G(T ) which implies that G(T ) is
closed.

(5 points)

(iii) If V is closed and T is closed, then by the closed graph theorem it follows
that T ∈ B(V, Y ). However, by part (i) it follows that T is unbounded and
by part (ii) it follows that T is closed. Hence, V cannot be closed.

(3 points)
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Solution of Problem 4 (5 + 5 + 5 + 5 = 20 points)

(a) If f, g ∈ V ⊥ and λ, µ ∈ K, then x ∈ V implies that

(λf + µg)(x) = λf(x) + µg(x) = 0,

which shows that λf + µg ∈ V ⊥ as well.

(5 points)

(b) If f ∈ V ⊥, then there exists a sequence fn ∈ V ⊥ such that fn → f . Let x ∈ V ,
then

|f(x)| = |f(x)− fn(x)| ≤ ‖fn − f‖ ‖x‖ → 0,

which shows that f ∈ V ⊥ as well. We conclude that V ⊥ is closed in X ′.

(5 points)

(c) If f ∈ V ⊥
2 then f(x) = 0 for all x ∈ V2. Since V1 ⊂ V2 it follows that f(x) = 0

for all x ∈ V1 as well. This means that f ∈ V ⊥
1 .

(5 points)

(d) If x ∈ V then f(x) = 0 for all f ∈ V ⊥, which in turn implies that x ∈ ⊥(V ⊥).

(5 points)
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